TED (10)-1002	
(REVISION—2010)	

Reg.	No.	
Cion	atura	

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLOGY—OCTOBER, 2013

TECHNICAL MATHEMATICS—I

(Common to all branches except DCP and CABM)

COLLE

(Maximum marks: 100)

Marks

PART-A

(Maximum marks: 10)

Which of the following matrices is symmetric: I 1.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} , \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} , \begin{bmatrix} 2 & -2 \\ 3 & 4 \end{bmatrix}$$

- Find the value of r, if $20C_r = 20C_r$ 2.
- State the identity for tan (A-B), 3.
- State projection formula. 4.
- 5. Define slope of a straight line

 $(5 \times 2 = 10)$

PART-B

(Maximum marks: 30)

(Answer any five questions. Each question carries 6 marks.)

Solve the equations: 3x + y - z = 3, -x + y + z = 1, x + y + z = 3 by finding the inverse of the coefficient matrix.

2. If
$$A = \begin{bmatrix} 5 & 3 \\ 2 & 2 \end{bmatrix}$$
, and $B = \begin{bmatrix} 7 & 5 \\ 4 & 3 \end{bmatrix}$, show that $(AB)^{-1} = B^{-1} A^{-1}$.

- Prove that $nC_r + nC_{r-1} = (n+1)C_r$.
- Prove that $\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$ 4.
- State and prove sine rule. 5.
- Using Napier's formula, find angles A and B in \triangle ABC, if a = 5cm, b = 8cm, 6. $C = 30^{\circ}$.
- Find the equation to the line passing through (4, 5) which is
 - (ii) perpendicular to the line 2x + 3y = 4.

 $(5 \times 6 = 30)$

5

5

PART-C

(Maximum marks: 30)

(Answer one full question from each unit. Each question carries 15 marks.)

III 1. If
$$A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 & 3 \\ -3 & 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 1 & 1 \\ 2 & -2 & 3 \end{bmatrix}$, verify that $A(B-C) = AB - AC$.

2. If $A = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$, show that $(AB)^T = B^T A^T$.

Show that the eliminant of 1x + my + n = 0, mx + ny + 1 = 0 and nx + 1x + m = 1 is $1^3+m^3+n^3=31mn$. 5

IV 1. If $A = \begin{bmatrix} 1 & 2 & 6 \\ 7 & 4 & 10 \\ 1 & 3 & 5 \end{bmatrix}$, evaluate $A^2-8A-20I$. 5

Express the matrix $A = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 2 & 3 \\ 3 & 1 & 0 \end{bmatrix}$ as the sum of a symmetric and a skew 5

Solve using determinant : x + 2y - z = -1, 3x - y - 2z = 5, x - y - 3z = 0. 5

Expand $(x + 1/x)^7$ using binomial theorem. 5

If tanx = 7/24 and x is in the third quadrant, find the value of $3 \sin x - 4\cos x$. 5 2.

Draw the graph of $y = \cos x$. 5

OR

Find the term independent of x in the expansion of $(x + 3/x)^{10}$. VI 1.

Write the signs of (i) $\cot (7\pi/4)$ (ii) $\tan 500$ (iii) $\csc 280$. (2+2+1)

Prove that $\frac{\tan 45 - \tan 30}{1 + \tan 45 \cdot \tan 30} = 2 - \sqrt{3}$. 5

VII 1. Prove the formula for cos 3A.

2. If $\sin 18 = \frac{\sqrt{5-1}}{4}$, find $\cos 36$ and $\sin 54$. 5

3. Prove that $\cos \frac{\pi}{8} + \cos \frac{3\pi}{8} + \cos \frac{5\pi}{8} + \cos \frac{7\pi}{8} = 0$. 5

If $\cos A = -12/13$, $\cot B = 24/7$ and A is in quadrant II and B is in Quadrant I, VIII 1. find cos (A-B).

5 Prove that $\cot A - \cot 2A = \csc 2A$.

3. Show that $\left(\frac{a+b}{a}\right) \sin^2 \frac{c}{a} = \cos \frac{A+B}{a}$

		Unit – IV	arks
IX	1.	Derive the equation of a straight line of the form $x/a + y/b = 1$.	5
	2.	Find the slope and intercepts of the line $5x - 3y + 15 = 0$.	5
	3.	Find the angles of the triangle having vertices $(3, 2)$, $(5, -4)$ and $(1, -2)$.	5
X	1.	Find the values of p if the lines $(2p + 1)$ $x-(5-p)y = 8$ and $(5p - 1)$ x $-(p+1)y = 3$ are parallel.	5
	2.	Find the foot of the perpendicular from $(-2,1)$ on the line $x-2y=6$.	5
	3.	A straight line cuts off on the axes of coordinates positive intercepts whose sum is 5. Given that the line passes through (-4, 9), find its equation.	5